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Use of synchronization and adaptive control in parameter estimation from a time series
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A technique is introduced for estimating unknown parameters when a time series of only one variable from
a multivariate nonlinear dynamical system is given. The technique employs a combination of two different
control methods, linear feedback for synchronizing system variables and adaptive control, and is based on
dynamic minimization of synchronization error. The technique is shown to work even when the unknown
parameters appear in the evolution equations of the variables other than the one for which the time series is
given. The technique not only establishes that explicit detailed information about all system variables and
parameters is contained in a scalar time series, but also gives a way to extract it out under suitable conditions.
Illustrations are presented for Lorenz and Ro¨ssler systems and a nonlinear dynamical system in plasma physics.
Also it is found that the technique is reasonably stable against noise in the given time series and the estimated
value of a parameter fluctuates around the correct value, with the error of estimation growing linearly with the
noise strength, for small noise.@S1063-651X~98!09412-4#

PACS number~s!: 05.45.2a, 47.52.1j
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I. INTRODUCTION

One of the objectives of time series analysis is to stu
the detailed structure of the equations of the underlying
namical system which govern its temporal evolution. T
includes the number of independent variables, the form
the flow functions, the nonlinearities in them, and parame
of the system@1#. This paper concentrates on the last asp
i.e., estimating the parameters of a nonlinear system fro
single time series when partial information about the sys
dynamics is available@2–4#.

Assuming that the number of independent variables
the structure of underlying dynamical evolution equations
a nonlinear system is known, we address the problem
determining the values of the parameters. In particular, gi
a time series for a single variable~a scalar time series!, we
suggest a simple method which enables us to determine
ues of the unknown parameters dynamically. The unkno
parameters may or may not appear in the evolution equa
of the variable for which the time series is given. For th
purpose, we employ a combination of two techniqu
namely, synchronization and adaptive control.

Owing mainly to the extreme sensitivity to initial cond
tions, engineering and controlling a nonlinear chaotic sys
requires a careful analysis. Feedback based synchroniz
techniques are investigated in this context to force a cha
system, to go to a desired periodic or chaotic orbit. Su
control mechanisms were suggested by Pecora and Ca
@5,6# and many others@7–11,13,14# with an aim to synchro-
nize two chaotic orbits and to stabilize unstable periodic
bits or fixed points. In such mechanisms, some of the in
pendent variables are used as drive variables and
remaining variables are found to synchronize with the
sired trajectory under suitable conditions. There have b
many other important attempts in controlling chaotic syste
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using synchronization@15–22#.
The other method that we use is that of adaptive con

which is used to bring back a system, deviated from a sta
fixed point due to changes in parameters and variables, t
original state. This mechanism was suggested by Huber
and Lumer@12#. It was generalized for an unstable period
orbit and a chaotic orbit by John and Amritkar@13# where it
was shown that it is possible to synchronize with an unsta
periodic orbit or a chaotic orbit starting from a random initi
condition and different value of the parameter.

In this paper, we show that a simple combination of sy
chronization and adaptive control methods similar to t
described by John and Amritkar@13,14# can be used for ex-
tracting information contained in a scalar time series. W
approach the problem by considering a dynamical system
which the number of independent variables and the struc
of evolution equations are assumed to be known. A lin
feedback function is added to the variable corresponding
that for which the time series is given. This acts as a dr
variable. The feedback serves the purpose of synchroniza
of all the system variables. The feedback function in our c
is proportional to the difference between the new and the
values of the drive variable.

The system variables respond to this feedback by s
chronizing with the corresponding values in the original s
tem. In the context of application of synchronization tec
niques to telecommunications, the new system to
reconstructed is often referred to as the receiver whereas
old system, from which the time series is made available
termed the transmitter. We will borrow the terminology, a
though the meanings of terms in the two cases are not
actly identical.

The synchronization as described above becomes e
when the receiver parameters are set equal to those o
transmitter and takes place whenever the conditio
Lyapunov exponents~CLE’s! as defined in the next sectio
are all negative. Now assume that precise values of on
few of the transmitter parameters are known to the rece
system. We show that, in such a case it is possible to w
284 ©1999 The American Physical Society
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PRE 59 285USE OF SYNCHRONIZATION AND ADAPTIVE CONTROL . . .
simple evolution equations for the unknown parameters~ini-
tially set to arbitrary values!, which when coupled with the
system equations, yield precise values of all the state v
ables and the unknown parameters asymptotically to any
sired accuracy.

Our method comprises of raising the unknown parame
to the status of variables of a higher-dimensional dynam
system which evolve according to a simple set of evolut
equations. The receiver forms a subsystem of this high
dimensional system which in addition contains the evolut
equation for the unknown parameters. The input to t
higher-dimensional system is a scalar time series obta
from the transmitter system. Thus our method uses a
namical algorithm to estimate the parameters which are
tained asymptotically. We note that the method of estimat
parameters using synchronization and minimization as p
posed in Ref.@2#, is essentially a static method. The proble
of estimating model parameters was also handled in Ref.@3#,
in which starting with an ansatz, the optimal equations
parameter evolution are obtained. Our method gives a s
pler and a systematic derivation of the parameter con
loop and in many cases, a better convergence rate.

It is well known that a great deal of information about
chaotic system is contained in the time series of its variab
Techniques such as embedding the time series in a s
with chosen dimensionality are available for studying t
universality class and otherglobal features of the system
Our results suggest that a scalar time series, in addition to
information about the universality class also contains inf
mation about the exact values of the parameters of the
derlying dynamical system, including the ones which app
in the evolution of other variables.

The method and the required notation is developed in S
II. Section III consists of illustrations for Lorenz and Ro¨ssler
systems and a set of equations in plasma physics. The e
of noise in the transmitter system is studied in Sec. IV.
nally we conclude in Sec. V with a brief summary of resu
along with a few remarks.

II. FORMALISM

A. Description of the method

In this section, we will describe our method of parame
estimation, for a general system withn variables andm pa-
rameters. We will first consider the case when only one
rameter is unknown to the receiver.

Consider an autonomous, nonlinear dynamical sys
with evolution equations

ẋ5f~x,$m j%!, ~1!

where x5(x1 ,x2 , . . . ,xn) is an n-dimensional state
vector whose evolution is described by the functi
f5( f 1 , . . . ,f n). The overdot represents time differentiatio
and$m j%, j 51,2, . . . ,m, are the parameters of the system

Now suppose a time series for one variable, which wi
out loss of generality can be taken asx1 , is given as an
output of the above system and in addition suppose the fu
tional form of f, and the values of all the parametersm j ,
j 51, . . . ,l 21,l 11, . . . ,m, are known while the time evo
lution of the remaining variables and value ofm l , the l th
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parameter are not known, then formally the problem at ha
consists of writing a set of evolution equations which w
yield the information about the unknown parameter and a
other variables. With the unknown parameterm l written ex-
plicitly for convenience we rewrite Eq.~1! as

ẋ5f~x,$m j u j Þ l %,m l !. ~2!

Now we introduce a new system of variablesx8
5(x18 ,x28 , . . . ,xn8) whose evolution equations have iden
cal form to that ofx. We fix x18 as the drive variable and
feedback is introduced in the evolution ofx18 . The param-
eters are also the same except the one corresponding t
unknown parameter which will be set to an arbitrary init
value denoted bym l8 . Thus the receiver system will have th
structure

ẋ185g~x8,$m j u j Þ l %,m l8!

5 f 1~x8,$m j u j Þ l %,m l8!2wf„x18 ,x1~ t !…, ~3!

ẋi85 f i~x8,$m j u j Þ l %,m l8!, i 52, . . . ,n, ~4!

where wf„x18 ,x1(t)… is a feedback function which depend
upon the drive variablex18 and the variablex1 . The feedback
function can be most simply chosen to be proportional to
difference (x182x1) and the evolution for the drive variabl
x18 can be written as

ẋ185 f 1~x8,$m j u j Þ l %,m l8!2e„x182x1~ t !…, ~5!

wheree is called the feedback constant. More general for
of the feedback function are also possible and give sim
results.

The receiver system is formed by Eqs.~4! and ~5!. If the
parameterm l8 in these equations is set precisely equal tom l

then the two sets of variablesx andx8 after a transient time,
evolve in tandem and show exact synchronization under s
able conditions, but because the value ofm l is unknownto
the receiver system, this does not happen.

The solution is to set the parameterm l8 to an arbitrary
initial value, while all others are set to the known valuesm j ,
and adapt it through a suitable evolution equation. The r
sulting (n11)-dimensional system then evolves all the r
ceiver variables to correct values of the corresponding tra
mitter variables and simultaneously settles the value ofm l8 to
that of m l provided all the CLE’s as defined in the ne
subsection, are negative.

The equation for evolution of them l8 is chosen similar to
those used in adaptive control mechanisms@13,14#, and quite
generally can have the form

ṁ l85hS „x182x1~ t !…,
]g

]m l8
D . ~6!

The form of the functionh that we have chosen is

ṁ l852d„x182x1~ t !…
]g

]m l8
, ~7!
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286 PRE 59ANIL MAYBHATE AND R. E. AMRITKAR
where d is another parameter in the combine
(n11)-dimensional system formed by Eqs.~4!, ~5!, and~7!.
We call it thestiffness constant. The values ofe and d to-
gether control the convergence rates involved in synchr
zation and adaptive evolution. Towards the end of this s
section, we will show that the above form of functionh @Eq.
~7!# is obtained as a result of dynamic minimization of t
synchronization error.

The last factor in the Eq.~7!, ]g/]m l8 , needs some elabo
ration. In general the parameterm l8 may or may not explicitly
appear in the evolution functiong(x8,$m j u j Þ l %,m l8) in Eq.
~3!. This stresses a need for identification of two separ
cases. If the functiong explicitly depends onm l8 , then the
calculation of (]g/]m l8) is straightforward.

In the case wherem l8 does not appear in the functiong
explicitly, it still indirectly affects the evolution ofx18 . The
information about the value ofm l is contained in the given
time seriesx1(t). Function]g/]m l8 ‘‘taps’’ this dependence.
The calculation of]g/]m l8 in this case, when functiong does
not explicitly depend onm l8 needs to be done carefully. Th
is done as follows.

Consider the system formed by Eqs.~4! and~5! in which,
a change in the variablex18 in one time step due to a chang
in the parameterm l8 can be estimated as follows:

Dx18'Dg dt'
]g

]xs8
Dxs8dt

'
]g

]xs8
D f s~dt!2'

]g

]xs8

] f s

]m l8
Dm l8~dt!2,

where xs8 is the sth variable of the receiver, such that i
evolution contains the parameterm l8 explicitly. Thus the last
of the above equations gives us

]g

]m l8
'

]g

]xs8

] f s

]m l8
. ~8!

A further complication arises if the variablexs8 itself does
not appear in the functiong explicitly. In such a case furthe
dependences appearing in more time steps may be co
ered. Note that here,xs8 may appear in more than one flo
functions and a summation over all such functions becom
necessary. In this case we can write

Dx18'Dg dt'
]g

]xs8
Dxs8 dt'

]g

]xs8
D f s ~dt!2

'H (
k

]g

]xk8

]xk8

]xs8
J ] f s

]m l8
Dm l8 ~dt!2

'H (
k

]g

]xk8

] f k

]xs8
J ] f s

]m l8
Dm l8 ~dt!3.

Thus the last factor in Eq.~7! takes the form
i-
-

te

id-

s

]g

]m l8
'H (

k

]g

]xk8

] f k

]xs8
J ] f s

]m l8
. ~9!

One such case appears in the example of Lorenz sys
which will be discussed in the next section.

Now, when more than one parameters of the transmi
are to be estimated, one may use a set of equations simil
form to that of Eq.~7!. We will use such a set when w
discuss Lorenz system where it will be assumed that two
three parameters of the Lorenz system are unknown to
receiver system. We note that a parameter estimation a
rithm as described in Ref.@3# can also be used in the estim
tion of more than one unknown parameters. It uses autos
chronization method based on an active pass
decomposition~APD! of a dynamical system@4# and starts
from an ansatz for the parameter control. In contrast,
method is a dynamical minimization for the synchronizati
error. This can be seen as follows.

Let us define the dynamical synchronization err
e(m l8 ,t) as

e~m l8 ,t !5~x182x1!2, ~10!

wherem l8 is the receiver parameter corresponding to the
known parameter andx18 is the drive variable. We note that i
m l8 takes precisely the value ofm l , then the transmitter and
receiver synchronize, which makes the error as defined
Eq. ~10! minimum, i.e., zero. To go to this minimum, w
want to evolvem l8 such that it will go to a value making
e(m l8 ,t) minimum. With an analogy to an equation in m
chanics, where an overdamped particle goes to a mimim
of a potential, we write the following:

ṁ l8}2
]e~m l8 ,t !

]m l8
, ~11!

which leads to

ṁ l8}2~x182x1!
]x18

]m l8
, ~12!

Further, to the lowest order in dt, Dx18

5(] ẋ18/]m l8) Dm l8 dt. Hence Eq.~12! can be written as

ṁ l852d~x182x1!
] ẋ18

]m l8
, ~13!

whered is a proportionality constant. This equation is th
same as Eq.~7!. In the next subsection we will define th
conditional Lyapunov exponents~CLE’s! for the newly re-
constructed receiver system and state the condition for
combination of synchronization and adaptive control to wo
convergently such that parameter estimation is possible.

B. Condition for convergence

Consider the transmitter equations@Eq. ~2!# and the re-
ceiver equations@Eqs. ~4!, ~5!, and ~7!#. Convergence be-
tween two trajectories of these systems means that the
ceiver variables evolve such that the differenc
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PRE 59 287USE OF SYNCHRONIZATION AND ADAPTIVE CONTROL . . .
(xk82xk),(k51, . . . ,n) and (m l82m l) all evolve to zero. In
the (n11)-dimensional space formed by these differenc
origin acts as a fixed point and the condition for the alg
rithm to work is the same as the stability condition for th
fixed point.

If the above differences are considered to form
(n11)-dimensional vector z5(z1 , . . . ,zn11)5(x18
2x1, . . . ,xn82xn ,m l82m l) then the differentialdz evolves
as

dż5Jdz, ~14!

where the Jacobian matrixJ is given by

J51
] f 1

]z1
2e

] f 1

]z2
¯

] f 1

]zn

] f 1

]m l8

] f 2

]z1

] f 2

]z2
¯

] f 2

]zn

] f 2

]m l8

A A A A

] f n

]z1

] f n

]z2
¯

] f n

]zn

] f n

]m l8

]h

]z1

]h

]z2
¯

]h

]zn

]h

]m l8

2 , ~15!

where the functionh describes the evolution of the parame
m l8 as in Eq. ~6! and the derivatives in the matrixJ are
evaluated atz50 which is a fixed point. The condition fo
the convergence of our procedure is that the real part of
eigenvalues of the matrixJ or conditional Lyapunov expo
nents are all less than zero.

It can be seen from the above matrix equation that cho
of the feedback constant and the stiffness constant affec
values of conditional Lyapunov exponents. Thus the met
will work convergently only for suitably chosene and d.
When these are chosen such that the largest of the C
become positive, the algorithm does not work due to dive
ing trajectories. In the next section we will illustrate th
method using the examples of Lorenz and Ro¨ssler flows and
a set of equations in plasma physics.

III. ILLUSTRATIVE EXAMPLES

A. Lorenz system

As a first example, we study the Lorenz system. We
vide the discussion in two parts. In the first, we present
results when only a single parameter is estimated in a Lor
system. Three different cases are discussed in detail. In
later part, we extend our method for the case when m
parameters are to be estimated.

1. Single parameter estimation

The Lorenz system is given by

ẋ5 f 1~x,y,z!5s~y2x!,

ẏ5 f 2~x,y,z!5rx2y2xz,

ż5 f 3~x,y,z!5xy2bz, ~16!
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where (x,y,z) form the state space and (s,r ,b) form the
three-dimensional parameter space. Now assume that
time series forx is given, and two of the three parameters a
also known. We consider the following cases.

Case 1: When the unknown parameter appears in the e
lution of x. Here assumings to be the unknown paramete
we create a receiver system as described in the Sec. I, g
by

ẋ85g~x8,y8,z8!5s8~y82x8!2e„x82x~ t !…,

ẏ85 f 2~x8,y8,z8!5rx82y82x8z8,

ż85 f 3~x8,y8,z8!5x8y82bz8, ~17!

where (x8,y8,z8) are the new state variables and (s8,r ,b)
are the parameters,r and b being the same as those in th
transmitter whiles8 is initially set to an arbitrary value.e is
the feedback constant. These constitute the receiver sys
x8 is thedrive variable.

The parameters8, which is initially set to an arbitrary
value, is made to evolve through an equation similar
equation@Eq. ~7!#. Here we can use only the sign of the la
factor in Eq. ~7! since there is a single equation involvin
parameter evolution.

ṡ852d„x82x~ t !…sgn~y82x8!. ~18!

This equation along with the receiver system@Eq. ~17!#, can
achieve required synchronization as well as parameter
mation since, a randomly chosen initial vector (x8,y8,z8)
evolves to (x,y,z) ands8→s as timet→`.

Figure 1 displays the manner in which the synchroni
tion takes place and how the parameters8, initially set to an
arbitrary value finally evolves towards the precise ‘‘u
known’’ values. In Figs. 1~a!–1~c! we show the differences
x82x,y82y,z82z as functions of time and we observe th
they eventually settle down to zero after an initial transie
In Fig. 1~d! we plot s82s as a function of time which also
goes to zero simultaneously.

The synchronization as shown in Fig. 1 occurs when c
ditional Lyapunov exponents for the receiver system coup
to the parameter evolution are all negative or at most ze
This restricts the suitable choices fore andd. The Jacobian
matrix J, for the evolution of the vector (x82x,y82y,
z82z,s82s) is given by@Eq. ~14!#

J5S 2s2e s 0 y82x8

r 2z8 21 2x8 0

y8 x8 2b 0

2d sgn~y82x8! 0 0 0

D . ~19!

Figure 2 shows the curve along which the largest C
becomes zero, in the (e,d) plane. In region I, all nontrivial
CLE’s are negative and the method works convergen
while in region II, the largest CLE becomes positive and
convergence takes place. Nevertheless note that for any p
tive value ofd, there can always be a suitably chosene such
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288 PRE 59ANIL MAYBHATE AND R. E. AMRITKAR
that the convergence occurs. On the other hand, there
critical value ofe below which the method does not work

Case 2a: When the unknown parameter appears in
evolution of y variable. Here, we consider the case ofr as the
unknown parameter~16! and reconstruct the receiver as

FIG. 1. ~a!–~d! show the differences (x82x,y82y,z82z,s8
2s), respectively, as functions of time, for the Lorenz syste
@Eqs.~16!–~18!#. The unknown parameter iss and the drive vari-
able isx. The figures show that the differences tend to zero asy
totically. s8 which is set to an arbitrary initial value finally evolve
to s facilitating the parameter estimation to any desired accurac
the asymptotic limit.

FIG. 2. The curve along which the largest conditional Lyapun
exponent@computed using Eq.~19!# becomes zero in the (e,d)
plane for the Lorenz system withs as the unknown parameter@Eqs.
~17! and~18!# is plotted. In region I, the CLE’s are all negative an
parameter estimation works convergently. Region II correspond
a positive largest CLE, where the method does not work. Note
there is a criticale below which the method does not work. Neve
theless for anyd, an e can be chosen so that the method works
a

e

ẋ85g~x8,y8,z8!5s~y82x8!2e„x82x~ t !…,

ẏ85 f 2~x8,y8,z8!5r 8x82y82x8z8,

ż85 f 3~x8,y8,z8!5x8y82bz8, ~20!

while the evolution ofr 8 takes the form of Eqs.~7! and~8!.
Similar to Eq. ~18! we use only the sign of the derivativ
involved:

ṙ 852d„x82x~ t !…sgn~sx8!. ~21!

When a time series forx from Eq. ~16! is fed into these
equations, settingx8, y8, z8, andr 8 to arbitrary initial con-
dition, they finally evolve to the corresponding values
x, y, z, andr . The associated Jacobian matrix@Eq. ~14!# is
given by

J5S 2s2e s 0 0

r 2z8 21 2x8 x8

y8 x8 2b 0

2d sgn~sx8! 0 0 0

D . ~22!

Figure 3 shows the curve along which the largest CLE
comes zero, in the (e,d) plane. In region I, all nontrivial
CLE’s are negative and the method works convergen
while in region II, the largest CLE is positive.

Let t denote the time required for the convergence to
correct value of the parameter within a given accuracy,
fined asA5(r 82r )/r . In Fig. 4 we plot (t) as a function of
the feedback constante, when the stiffness constantd is held
fixed. On the other hand,t may be plotted as a function ofd
for a fixed value ofe. This is plotted in Fig. 5. In both Figs
4 and 5,r is assumed to be unknown and a time series fox
is assumed to be given. The chosen accuracy for con
gence was 1027.

-

in

v

to
at

FIG. 3. The figure shows the curve along which the larg
conditional Lyapunov exponent for Lorenz system with the para
eter r as unknown andx as drive variable@Eqs. ~17! and ~21!#
becomes zero in the (e,d) plane. In region I all the CLE’s are
negative and the parameter estimation can be achieved. In regi
the the largest Lyapunov exponent is positive.
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In Fig. 6 we plot the time required for convergence ofr 8
to r to within a given accuracy as a function of logarithm
the accuracy, which is normalized with respect to the ini
value. The straight line shows that the time required
achieve better accuracy grows exponentially. The slope
the line in Fig. 6 corresponds to the Lyapunov exponent
was compared with the Lyapunov exponent computed us
a numerical algorithm and a fair agreement was observe

Case 2b: When the unknown parameter appears in
evolution of z variable.The case where the parameterb ap-
pearing in the evolution ofz @Eq. ~16!# is unknown, while the
given time series is forx is a particularly interesting case
Since the variablez does not appear explicitly in the evolu
tion equation forx, the calculation of derivative in Eq.~7!

FIG. 4. The plot shows the time (t) required for convergence o
r 8 to r to a given accuracy with a fixed value of the stiffness co
stant (d), as a function of the feedback constante for Lorenz sys-
tem. The drive isx while the unknown parameter isr. It can be seen
that the synchronization time tends to infinity when the largest C
becomes zero.

FIG. 5. The plot shows the time (t) required for convergence o
r 8 to r to a given accuracy, with a fixed value of the feedba
constant (e), as a function of the stiffness constantd for the Lorenz
system. The drive isx while the unknown parameter isr. It can be
seen that the synchronization time tends to infinity asd approaches
a value so as to make the largest CLE zero.
l
o
of
It
g

.
e

has to be done using Eq.~9!. Thus with the evolution forb8,
the complete receiver system becomes

ẋ85g~x8,y8,z8!5s~y82x8!2e„x82x~ t !…,

ẏ85 f 2~x8,y8,z8!5rx82y82x8z8,

ż85 f 3~x8,y8,z8!5x8y82b8z8, ~23!

ḃ852d„x82x~ t !…sgn~sx8z8!. ~24!

An initial vector (x8,y8,z8,b8) in the above system goe
to (x,y,z,b) and thus makes the estimation of the value ob
possible. Here the matrixJ takes the form@Eq. ~14!#

J5S 2s2e s 0 0

r 2z8 21 2x8 0

y8 x8 2b 2z8

2d sgn~sx8z8! 0 0 0

D . ~25!

Figure 7 shows the curve along which the largest CLE
comes zero in thee2d plane. In region I, all CLE’s are
negative and the condition of convergence is satisfied.

Finally we note that in all the three cases discussed ab
since the time series forx in Eq. ~16! is assumed to be
known, x8 acts as a drive variable. A similar procedure
possible when a time series fory in Eq. ~16! is given as an
input. Herey8 can be chosen as a drive variable which driv
the evolution of the remaining variables as well as the
known parameter. Thus it is possible to know an unkno
value of any of the parameters of the Lorenz system from
single time series forx or y.

-

E

FIG. 6. The graph shows the timet required to achieve the
parameter estimation to within a given accuracy as a function of
accuracyA ~logarithmic scale! normalized with respect to the initia
deviation of the parameter from the correct value for Lorenz sys
@Eq. ~16!#. The time series forx is assumed to be known while th
value of r is unknown. The straight line shows that the time r
quired for a better accuracy grows exponentially.
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2. Extension to the many parameters estimation

Here we will consider the estimation of two or three p
rameters for the Lorenz system~16!. We have applied our
method for estimation of two parameters of the Lorenz s
tem ~16!, takingx or y as drive variables. A typical receive
system, takingx as the drive and (s,r ) as the unknown
parameters, is constructed as

ẋ85s8~y82x8!2e„x82x~ t !…,

ẏ85rx82y82x8z8,

ż85x8y82bz8,

ṡ852d„x82x~ t !…~y82x8!,

ṙ 852d„x82x~ t !…~sx8!. ~26!

Note that the same stiffness constant is used in control
both the unknown parameters.

We have found that with similar receiver structure to th
in Eq. ~26!, it is possible to estimate any two of the thre
parameterss, r , andb, when a time series for either ofx or
y is given. In Fig. 8~a! we plot the difference (s82s) while
Fig. 8~b! shows (r 82r ) as functions of time, when the driv
is x and two parameterss andr are assumed unknown to th
receiver. We see that the differences converge to zero, i
cating that it is possible to estimate two parameters simu
neously.

Finally we mention that, if the time series fory is given,
estimation of all the three parameters is possible thoug
this case, the convergence is very slow. The method fail
estimate all the three parameterss, r , and b, when time
series forx is given. We thus note that the detailed inform

FIG. 7. The curve along which the largest conditional Lyapun
exponent becomes zero in the (e,d) plane for the Lorenz system
with b as the unknown parameter andx as drive@Eqs.~23! and~24!#
is plotted. In region I, the CLE’s are all negative and parame
estimation works convergently. Region II corresponds to a posi
largest CLE, where the method does not work. Similar to ot
cases, there is a criticale below which the method does not work
-

-

g

t

i-
a-

in
to

-

tion about all the parameters of Lorenz system is contai
in a time series for eitherx or y variables and can be ex
tracted as above.

It should, however, be mentioned that when a time se
for z is given from a Lorenz system, the eigenvalues of
associated matrixJ @Eq. ~15!# do not satisfy the condition o
convergence for any choice ofe and d. Thus the method
fails when a time series forz is known.

B. Rössler system

We next consider the Ro¨ssler system of equations give
by

ẋ52y2z,

ẏ5x1ay,

ż5b1z~x2c! ~27!

which contains the three parameters (a,b,c). We have ap-
plied our procedure to estimate any of these paramet
when unknown, assuming the knowledge of a time series
the variabley in the Rössler system. The corresponding va
abley8, which acts as a drive variable for (x8,y8,z8) and the
evolution of the unknown parameter, then evolves throug

ẏ85x81ay82e„y82y~ t !…, ~28!

while the unknown parameter evolves adaptively. Thus w
the given time seriesy(t), fed into the evolution of the drive
variabley8, we find that the convergence condition can
satisfied by a suitable choice of feedback constant and
stiffness constant.

In Fig. 9 we show the convergence of (x82x,y82y,z8
2z,a82a) to ~0, 0, 0, 0! when the parametera is unknown.
Thus our algorithm of parameter estimation works fory8 as
a drive variable and any of the three parameters can be

v

r
e
r

FIG. 8. Plots~a! and ~b! show the differencess82s and r 8
2r , respectively, as functions of time in the Lorenz system@Eq.
16#. The unknown parameters ares andr and the drive variable is
x. The plots show that the differences go to zero, and hence indi
that a simultaneous estimation of more than one unknown par
eter is possible.
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mated. We have, however, found that the convergence is
possible forx or z as the drive variables.

Finally, we have also applied our method to estimate t
or three parameters of the Rossler system withy as a drive
variable. It was seen that no choice of the feedback cons
and the stiffness constant lead to convergences required
estimation.

C. An example from plasma physics

As our final example, we present a set of nonlinear eq
tions appearing in plasma physics. This is the so-called re
nant three-wave coupling equations when the high freque
wave is unstable and the remaining two are damped@23#.
These equations are

ȧ15a11a2
2 cosf,

ȧ252a2~g1a1cosf!, ~29!

ḟ52d1a1
21~2a1

22a2
2!sinf,

whereg andd are the system parameters.
We find that with time series given for eithera1 or a2 , it

is possible to know an unknown parameterg or d using
synchronization and adaptive control. The method fails wh
a time series forf is known.

Figure 10 displays the evolution of the differences b
tween the transmitter and receiver variables as well as
evolution ofd82d as functions of time, when the time serie
for a1 is known. As expected, the differences go to ze
asymptotically.

FIG. 9. ~a!–~d! show the differencesx82x, y82y, z82z, and
a82a as functions of time, respectively, in the Ro¨ssler system@Eq.
~27!#. The unknown parameter isa and the drive variable isy. The
figures show that the differences tend to zero asymptotically.a8
which is set to an arbitrary initial value finally evolves toa facili-
tating the parameter estimation.
ot
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IV. EFFECT OF NOISE

In this section we will study the effect of noise present
the transmitter system. We will take the example of the L
renz system@Eq. ~16!# for this purpose, wheres is assumed
to be the unknown parameter andx acts as a drive variable

Assuming that there is a small additive noise presen
the time series given forx, we feed the noisy time series int
the receiver system@Eq. ~17!# and carry out the paramete
estimation as described. We find that for weak noise,
asymptotically estimated value of the parameter fluctua
around the correct value with a small amplitude. Thus
estimation is possible using our method. The error in
estimation can be reduced by a suitable averaging over
time evolution ofs8 in the asymptotic limit. For increasing
strengths of noise, the fluctuations in the estimated va
grow larger and precise estimation becomes difficult. Fig
11 shows the convergence ofs8 to s when additive noise is
present in the evolution ofx, the drive variable of the Lorenz
system, for which the time series is given.

We define the accuracy (A) in the estimation ofs as
(s82s)/s while w denotes the strength of noise with un
form distribution ranging from2w to w. In Fig. 12 we plot
the asymptotic value of A, the accuracy of the estimation
s, against the strengthw of noise inx. It can be seen from
the curve that the accuracy grows linearly as the noise
creases to a value ofw52 which corresponds to about 12%
of the range ofx values. The plot thus shows that our meth
is quite robust for weak noise inx, while it can fail as the
noise strength increases to a larger value.

FIG. 10. ~a!–~d! show the differencesa182a1 , a282a2 , f8
2f, and d82d as functions of time, respectively, in the plasm
system@Eq. ~29!#. The unknown parameter isd and the drive vari-
able is a1 . The figures show that the differences tend to ze
asymptotically.d8 which is set to an arbitrary initial value finally
evolves tod facilitating the parameter estimation.
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V. CONCLUSIONS

To summarize, we have shown that a combination of s
chronization based on linear feedback given into only
single receiver variable with anadaptiveevolution for pa-
rameters unknown to the receiver, enables the estimatio
the unknown parameters. The feedback comes from a sc
time series. We have also shown that our procedure co
sponds to dynamic minimization of the synchronization
ror.

We have presented examples of Lorenz and Ro¨ssler sys-
tems taking different candidate parameters to be unknow
the receiver as well as that of a plasma system obeying r
nant three-wave coupling equation. In the Lorenz syst
@Eq. ~16!#, any of the three parameters can be estima
when a time series is given for either ofx and y, but the
method fails when the known time series is for the varia
z. Extensions to estimation of more than one parameter
the Lorenz system are also presented as a representative
Estimation of two parameters is possible for bothx or y as
drive variables while estimation of all the three parameter
possible only when time series fory is given.

In the case of Ro¨ssler system@Eq. ~27!# the method works
only when the time series is given for the variabley where it
is possible to estimate any of the three parameters. We
that in case of the plasma system, the parameters ca
estimated with the feedback in the evolution for eithera1 or
a2.

FIG. 11. The graph shows the evolution ofs82s as a function
of time, in the presence of an additive noise (w50.1) in the given
time series forx for Lorenz system~16!. The value ofs is assumed
unknown. The plot shows that the differences82s fluctuates
around zero with a small amplitude after an initial transient an
reasonably good estimation is possible using a suitable avera
over these fluctuations.
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We have thus numerically demonstrated that the exp
detailed information about the parameters of a nonlinear c
otic system is contained in the time series data of a varia
and can be extracted under suitable conditions. This infor
tion includes the particular values of the parameters of
system which can be estimated even if they appear in
evolution of variables other than the one for which the tim
series is given.

We have also checked the robustness of the met
against the noise and it shows reasonable robustness ag
small noise though the error of estimation becomes large
the noise strength is increased.

The possibility of improving the efficiency of the metho
needs to be explored. This can be done, for example,
optimizing the choices of parameterse andd or by trying to
estimate initial values of variables of the transmitter syste
corresponding to response variables and thereby sta
from a ‘‘better’’ initial point. Work in these directions is
under progress.
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FIG. 12. The plot of asymptotic accuracy of parameter estim
tion @A5(s82s)/s#, as a function of strength of the noise,w, in
the given time series ofx in Lorenz system@Eq. ~16!#. The noise
with strengthw takes uniformly distributed values from2w to
1w. The drive isx and the unknown parameter iss. It is seen that
the estimation ofs is stable for a range of noise strength growin
from zero to about 2.0 which corresponds to about 12% of the ra
of x values.
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